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Abstract — This paper describes a preliminary study on 

simulating commercial buildings modeled as consumer 

agents that interact with the power grid. A simple hourly 
bottom-up building energy model is developed with respect 

to climate conditions and building design and operation. 

This model is used to simulate different types of commercial 

buildings as agents and to derive the hourly load profile of 

the entire building stock at the city/regional level. By 

updating building operating parameters in this bottom-up 

model according to different occupant control strategies 

under real-time electricity pricing, the total electricity 

demand of the building stock can be estimated; this will, in 

turn, affect the electricity market. Two test cases are 

modeled to estimate the commercial building stock demand 

response and its impact on the regional electricity market. 
 

 

I. INTRODUCTION 

In the United States, commercial and residential buildings 
account for 39% of primary energy consumption, 40% of 
carbon dioxide emissions, 71% of electricity use, and 54% of 
natural gas use [1]. Energy use for buildings steadily 
increased from 1985 to 2000 by 17% and is projected to 
grow annually by 1.7% to 2025 [2]. Lighting, HVAC 
(heating, ventilation, and air conditioning), and appliances 
account for a big fraction of energy consumption. Studies 
have shown that commercial buildings have equipment and 
operational deficiencies that lead to wasting up to 20% of 
energy used for HVAC, lighting, and refrigeration as a result 
of problems with system operation [3]. Utility demand 
response programs give consumers a role in managing their 
energy use on the basis of the cost of power at any given 
time. A recent study conducted by the Federal Energy 
Regulatory Commission (FERC) estimated that if price-
responsive programs were universally added to the mix of 
existing load demand programs in the United States, a 
reduction of 20% in peak demand could be achieved by the 
year 2019 [4]. 

 

 

To simulate the interplay of different players (regulators, 
generation companies, transmission companies, distribution 
companies, and consumers), an agent-based modeling 
paradigm has been advocated as both a solution and a 
framework for analyzing the properties of systems in which 
multiple self-interested parties interact [5-7]. Much research 
has focused on attempting to simulate the electricity price 
elasticity and consequences of implementing demand 
response programs in a real-time pricing market. In these 
studies, electricity consumers (i.e., buildings) are usually 
modeled as predefined, aggregated, and fixed-load profiles 
on the basis of historic regional electricity consumption data. 
Such a simplified model focuses on the electricity generation 
and transmission levels but cannot model the diversity and 
dynamics of building consumers in terms of design and 
operation. 

In this paper, we address this shortcoming and provide an 
agent-based framework for modeling the dynamic response 
of the commercial building stock in a real-time pricing 
market. In this framework, a cluster of buildings of the same 
type (a total of 10 types are considered in this study) located 
in the same city/region is considered to be an agent. The 
electricity demand of the building agents is determined by 
running a simple hourly physical energy simulation for 
representative buildings in the stock and scaling it to the 
entire agent cluster by building floor area. Sets of input 
parameters for the representative buildings are developed 
with respect to building type, location, and age. By using this 
framework under certain assumptions and given the general 
information on building design and operation, we can predict 
the hourly total electricity demand of a building stock. In 
addition, by updating the input parameters of the physical 
building model, we can also quantify the consequences of 
building load reduction behaviors. In more detail, this work 
advances the state of art in the following ways: 

1. We developed a simple hourly building end-use energy 
modeling program based on ISO 13790 [8]. Given climate 
conditions and general specifications for the building 
program, materiality, HVAC, and equipment, the model can 
calculate building load profiles while requiring very little 
computing intensity. Comparisons between this model and 
EnergyPlus [9] for different commercial building types 
showed overall compliance. Meanwhile, we also noticed that 
a deeper comparison study that would improve this research 
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in future is to compare the detailed simulation and normative 
calculation on the basis of what can be known out of the 
cluster of buildings we are considering, when we do not 
know enough information about them. A probabilistic view 
of demonstrating estimation accuracy with uncertainty gives 
more information for decision makings. 

2. We provided a building stock modeling framework in the 
domain of power grid modeling, so that commercial 
buildings can be modeled in more detail with regard to their 
composition and operation. 

3. Using our agent-based framework in a real-time pricing 
market, we can show how much utility cost can be saved by 
adjusting building operating parameters (air-conditioning 
set-point temperature, lighting intensity, etc.). If we apply 
this framework to a larger region, the impact on the local 
electricity price can also be modeled on the basis of the 
electricity supply curve. In short, this is the first attempt at 
applying hourly building energy models to a large-scale 
electricity supply simulation. 

The rest of the paper is structured as follows. Section II 
introduces the bottom-up simple hourly building energy 
model. Section III extends the single building model to 
commercial building stock agents, considering different 
building types. Section IV combines the electricity demand 
of these agents with the supply curve and shows example 
experiments. Section V has the conclusions. 

II. BOTTOM-UP BUILDING ENERGY MODEL 

Simple Hourly Building Energy Model 

Several models and tools have been developed to evaluate 
energy use and the indoor environment conditions in 
commercial buildings. They range from simplified normative 
procedures useful for hand calculations to dynamic 
simulation models that use detailed numerical calculations of 
heat, air, and moisture transfer by sophisticated systems that 
control temperature, daylight, etc. The simplified calculation 
procedures often use only a few items of input data and a 
limited set of equations to maintain a high level of 
transparency, reproducibility, and robustness. Major benefits 
of using the normative model include (1) reducing input 
parameters as much as possible; (2) making modifications to 
the input parameters easy by directly using the physical 
behavior to be implemented; and (3) maintaining an 
adequate level of accuracy, especially for air conditioned 
buildings where the thermal dynamic of the room behavior 
has a high impact. 

The present effort uses the existing ISO 13790 [8] simple 
hourly approach as a starting point before estimating the 
building hourly electricity demand. It is based on an 
equivalent resistance-capacitance (R-C) network, as shown 
in Fig. 1. 

 In this model, the input parameters include building 
geometry (floor area, elevation, and window-wall ratio), 
materiality (U-value, light transmission, and absorption 
factors of enclosure), HVAC (schedule, efficiencies, and set-
point temperature), and lighting and equipment (intensity and 
schedule). Typical meteorological year (TMY) hourly 
weather data are also used. Then the heating and/or cooling 

needs are found by calculating, for each hour, the heating or 

cooling power (      ) that needs to be supplied to or 

extracted from the indoor air node (    ) to maintain a 
certain set-point indoor air temperature. 

Heat transfer by ventilation (   ) is connected with the 
supply air temperature (    ) and the interior temperature 

(    ). Heat transfer by transmission is split into the window 
part (     ) and non-window part (       and       ); only 

the non-window part is connected by a single thermal 
capacity (  ), representing the building thermal mass. The 
heat gains from internal and solar sources are split into three 
parts (    ,    and   ) and applied to the nodes of indoor 
air (    ), internal environment (  ), and thermal mass (  ), 
respectively. 

 
Figure 1.  Thermal R-C model of the simple hourly method 

The detailed calculation procedure is described in 
ISO 13790. Validation of the simple hourly method at the 
thermal need level was also performed against detailed 
dynamic simulations [10, 11].  

On the basis of the calculated thermal needs, we developed 
modules to estimate the hourly end-use energy for heating, 
cooling, lighting (interior and exterior), equipment (interior 
and exterior), refrigeration, fan, and pump according to the 
building design and operation specifications. These 
categories were then summed up to get the total end-use 
consumption of electricity and natural gas. 

Testing and Validation 

In order to estimate the electricity consumption of the actual 
commercial building stock, the building energy model 
should be able to estimate the energy consumption of 
different building types. The 2003 Commercial Building 
Energy Consumption Survey (CBECS) [12] provides a list of 
commercial building types and their surveyed energy 
consumption data. We selected the 10 types listed in Table I 
from it. CBECS data show that these 10 types cover 83.7% 
of the U.S. total electricity consumption of commercial 
buildings. Other building types (e.g., public assembly, 
religious worship, vacant) have different energy 



consumption patterns and cannot be simply modeled. 
Because of their small share in the national electricity 
consumption, they are ignored in this study. 

TABLE I.  CONSIDERED BUILDING TYPES 

Abbrev. Building Type 
2003 Electricity 

Consumption (kWh) 

% of 

CBECS 

Total 

O Office 211 20.2 

S Supermarket 
  153* 14.7 

M Strip Mall 

E Education 109 10.5 

H Healthcare   73  7.0 

W 
Warehouse 

 and Storage 
  72  6.9 

L Lodging   69   6.6 

FE Food Service   63  6.0 

R 
Retail 

(Other Than mall) 
  62  5.9 

FS Food Sales   61  5.8 

Total 873 83.7 

* Classified as “Enclosed and strip mall” in CBECS 2003. 

 

The U.S. Department of Energy (DOE), in conjunction with 
three of its national laboratories, developed commercial 
reference buildings, formerly known as commercial building 
benchmark models [13]. These reference buildings provide 
complete descriptions for conducting whole building energy 
analysis using EnergyPlus simulation software [9], a 
dynamic building energy simulation tool developed by DOE. 
The proposed simple hourly model is compared with 
EnergyPlus. We modeled the representative buildings of the 
above 10 types in the proposed model to compare the 
seasonal and diurnal electricity demand profiles with 
EnergyPlus results. 

Take the office building as an example. The reference office 
design in Fig. 2 is selected as an existing building built after 
1980. This rectangular office in Chicago, Illinois, has 
12 floors and a total floor area of 46,320 m2. Its primary 
heating source is natural gas. 

 

 
Figure 2.  Reference office building in perspective and plan 

The annual total electricity results are broken down into 
different building energy categories as shown in Fig. 3. The 
data on consumption for cooling, lighting, and equipment 
from the simple hourly model are very close to the results 
simulated by EnergyPlus. However, the simple hourly model 
has a larger error for the consumption by fans and pumps 
(32% less) and heat rejection (not considered). Overall, the 
annual total electricity consumption calculated by the simple 
hourly model is only 2% less than the results from 
EnergyPlus. 

 
Figure 3.  Annual electricity consumption breakdown calculated by 

EnergyPlus and the simple hourly model 

Fig. 4 compares the hourly electricity demand over a year 
calculated by EnergyPlus and by the proposed simple hourly 
model. There is a peak demand during summer because of 
the high cooling load. In winter, the daily load patterns 
remain relatively regular because the test building uses 
natural gas as the source for heating. The comparison shows 
an overall compliance between the results of the two 
methods. However, the simple hourly model underestimates 
the daily peak load during the intermediate seasons (Apr–Jun 
and Oct–Nov) by up to 20%. Moreover, it overestimates the 
daily peak load during Jul–Aug by up to 30%. The 
differences are mainly a result of the oversimplification of 
multi-zone dynamic simulation when compared with 
EnergyPlus. During the intermediate seasons, within the time 
step co-existing heating and cooling loads in different air-
conditioning zones of the building offset each other and give 
a lower estimate of total demand in the simple hourly model. 
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Figure 4.  Hourly electricity demand of the reference office building 

calculated by EnergyPlus and the simple hourly model 

The hourly electricity demand for the test building for two 
typical weeks in January and August are plotted in Fig. 5 and 
Fig. 6. The profiles calculated by the two methods resemble 
each other well in winter, when there is no cooling demand. 
In summer, the daily peak demands are slightly different in 
the two models. In summer, the difference is around 10% for 
weekdays, and up to 50% for weekends. 

 
Figure 5.  Hourly electricity demand, January 7

th
 through 14

th
  

 
Figure 6.  Hourly electricity demand, August 5

th
 through 12

th
 

The comparison of yearly and daily electricity demand 
profiles shows that the proposed simple hourly model gives a 
reliable estimate of the annual total demand as well as of 
diurnal variation for most of the time.  

We performed testing and validation of all the building types 
listed previously. In general, an estimation error exists, but it 
is acceptable for the large-scale building stock energy 
calculation. These tests and validations provide the 
foundation for the commercial building stock modeling. The 
simple hourly building models are used as the core of the 
commercial building agents. 

III. COMMERCIAL BUILDING STOCK AGENTS 

Broadly, there are two fundamental methods for modeling 
energy consumption from a certain amount of buildings at 
the city/regional/national level: the top-down approach and 
bottom-up approach [14, 15]. The physically based bottom-
up approach takes into account information on building 
design and operations. This “white-box” approach is thus 
more flexible in simulating the consequences of changes to 
building operations than the “black-box” top-down statistical 
models. Typically the bottom-up building stock energy 
simulation consists of the following steps: 

1) Categorizing the whole building stock according to 
energy consumption characteristics; 

2) Designing building prototypes, each representing a 
building stock category that is used as an input dataset 
for simulation in the next step; 

3) Performing simulations by using these prototypical 
building models to predict the energy consumption per 
unit floor area or household in each building stock 
category as an agent; and 

4) Aggregating the total energy consumption by summing 
up the predicted energy consumption of all building 
stock categories. 

This modeling approach has been applied and advanced in 
several studies [15, 16]. The purpose of these studies is 
usually to estimate the baseline and improved 
annual/monthly energy demand of the building stock in order 
to advance design improvements and policy making. 
However, very little work has been done on the application 
of hourly based modeling to simulate the dynamic 
interaction between the building stock and the electricity 
grid. This type of large-scale simulation requires a good 
balance between the required calculation accuracy and 
computing intensity. Apparently either the over-engineering 
and detailed simulation model, or the overwhelming amount 
of buildings modeled in a stock, would not meet this 
requirement. 

The framework we are proposing considers a cluster of 
buildings of the same type within the same region to be one 
agent. The hourly electricity demand of this agent is 
determined by multiplying the total floor area of this 
building type in this region to the electricity use intensity (in 
MW/m2) of its representative design, calculated by the 
simple hourly method. The validity of this simplification is 
going to be studied, in the light of the sensitivity of the 
decision making on the outcome of the simulation. This not 
only relates to the aggregation but also to the chosen 
simulation method. 

Each region/city may have multiple commercial building 
agents. Different weather profiles apply to agents in different 
regions. Fig. 7 illustrates the relationship between building 
agents, region/city, and transmission lines. The letters in the 
circles are abbreviations of building types, listed in Table I. 
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Figure 7.  Conceptual relationship between building agents, regions, and 

transmission lines 

Each building agent requires a list of input parameters to be 
specified, as shown in Table II. These parameters are 
classified into program, materiality, HVAC, and equipment. 

TABLE II.  REQUIRED INPUT PARAMETERS FOR EACH BUILDING AGENT 

Program Materiality 

Building location 

Total conditioned floor area 

Building height 

Opaque wall area (all directions) 

Window area (all directions) 

Occupancy 

U-value of envelope 

Solar transmittance 

Solar Heat Gain Coefficient (SHGC)  

of glazing 

Reflectance of opaque walls 

Solar shading factor of glazing 

Building thermal inertia 

HVAC Equipment 

Ventilation needs and schedule 

Thermostat set-point temperature 

Heating energy source 

H/C generation efficiency 

H/C distribution efficiency 

Fan and pump size and schedule 

Int. lighting intensity and schedule 

Ext. lighting intensity and schedule 

Int. equipment intensity and schedule 

Ext. equipment intensity and 

schedule 

Refrigeration capacity and schedule 

 

The input parameters of the representative designs are crucial 
to the simulation results. If local data are available, the 
accuracy can be improved by dividing the interested area 
into multiple small regions and specifying local average data 
for each building agent. However, in most cases, when local 
building data are not available, regional statistical data are 
used instead. Ref. [17] studied the ranges of energy modeling 
input parameters for commercial buildings by building type 
in different climate zones and checked the simulation results 
against CBECS 2003. We adapted these results and 
developed a prototype for Illinois as an example. 

We used the same geometry of DOE commercial reference 
buildings in the prototype. The set of parameters of 
materiality, HVAC, and equipment are classified as Old 
Vintage (pre-1980) and New Vintage (post-1980), according 
to the construction or renovation time of the majority of the 
buildings in the stock. The user of the tool is able to select 
the class that best describes the real condition, and then the 
corresponding set of input parameters are applied to the 
agent. With supermarkets as an example, the set of 
materiality parameters for Illinois is listed in Table III. 

 

TABLE III.  REPRESENTATIVE MATERIALITY INPUT PARAMETERS 
 FOR SUPERMARKETS 

Category Parameter (Unit) Pre-1980 Post-1980 

Materiality 

Wall U-value (W/m
2
/K) 1.721 0.979 

Roof U-value (W/m
2
/K) 0.617 0.494 

Wall reflectance 0.08 0.08 

Window SHGC 0.407 0.385 

Bldg. thermal inertia 

(1 very light, 5 very heavy) 
4 3 

 

Complete sets of input parameters for each representative 
building with respect to climate zone and building age is 
stored in a database. When the total floor area, building age 
(pre- or post-1980), and primary heating source (electricity 
or non-electricity) are specified for each building agent, the 
software selects the corresponding input files from the 
representative building parameter database and the right 
climate data from the climate database. Input data files then 
go to the simple hourly model. The calculated hourly 
electricity demands of building agents are then aggregated to 
derive the total hourly demand profile of the region. Given 
the demand profile and a power supply curve, the electricity 
price can then be determined and inform building operations 
as a feedback. This calculation process is illustrated in Fig. 8. 

 
Figure 8.  Agent-based building stock energy simulation process 

IV. INTERACTION BETWEEN COMMERCIAL 

BUILDING STOCK AND THE POWER GRID 

In this proposed framework, since building agents are based 
on bottom-up physical models, building operation behavior 
can be connected with the price aspects of the power market. 

First, building agent input parameters can be dynamically 
manipulated to reflect the reactions of building operation 
(e.g., change A/C set-point temperature, reduce lighting 
intensity) to the electricity price. This quantifies the amount 
of utility savings to the agents in a typical local climate 
condition. Second, also shown in Fig. 8, in a real-time 
pricing electricity market, the hourly electricity price can be 
determined by the building stock load profile and a power 
supply curve. This demand response process is also modeled 
in the prototype. This section shows two experiments to 
demonstrate these scenarios. 

Test Case 1: Load Reduction 

We use a simple building stock consisting of only office 
buildings to demonstrate the demand reduction. 
Specifications of the building agent in this test case are 
shown in Table IV. 
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TABLE IV.  BUILDING STOCK SPECIFICATION IN CASE 1 

Building Type 

Total Floor 

Area (million 

sq. m) 

Dominant 

Building 

Age 

Primary Heating 

Source 

Office 1 Pre-1980 Natural gas 

 

This building stock is located in Chicago. A typical hourly 
electricity price profile in Illinois is assigned to the agent 
(Fig. 9). It is assumed that the electricity demand of this 
agent has little impact on the electricity price. 

 
Figure 9.  Typical hourly electricity price profile 

In this market, given the electricity price in the previous 
hour, it is assumed buildings can take three demand-reducing 
actions (Table V). When the price is above $45/MWh, the 
indoor AC set-point increases by 2℃. When the price is 
above $50/MWh and $55/MWh, lighting and internal 
equipment power, respectively, decrease by 20%. 

TABLE V.   AGENT LOAD-REDUCING ACTIONS AND ELECTRICITY PRICE 

Demand Reduction 

Scenario 

When the 

Power Price 

Is above 
Action from Buildings 

 Cooling set-point  $45/MWh Increase set-point temp. by 2℃ 

 Lighting $50/MWh Reduce lighting load by 20% 

 Internal equipment $55/MWh Reduce load by 20% 

 

On the basis of TMY climate data and stock specifications, 
the prototype simulates hourly stock electricity demand and 
price for a year. Fig. 10 compares the baseline (no action) 
and reduced loads simulated for the week of August 4. At 
noon of each business day when the electricity price 
approaches the daily peak, three load reduction scenarios are 
activated to reduce the power demand. The corresponding 
hourly electricity cost is also plotted in Fig. 11. 

 
Figure 10.  Office agent electricity demand profile before and after three 

reduction actions, Aug. 4
th

 through 12
th
 

 
Figure 11.  Office agent electricity bill profile before and after three 

reduction actions, Aug. 4
th

 through 12
th
 

To quantify the effectiveness of the different load reduction 
scenarios, the annual electricity conservation and utility 
savings are aggregated (Table VI). In this test case, 
reductions in lighting and internal equipment power have 
very little impact with regard to saving energy and money 
because of the higher thresholds and small reduction 
percentages for these two scenarios. But increasing the 2℃ 
cooling set-point temperature at an electricity price of 
$45/MWh or above leads to a 2.83% annual electricity 
reduction and 3.41% monetary savings. 

TABLE VI.  UTILITY SAVINGS OF THE DEMAND REDUCTION ACTIONS 

FOR THE TEST BUILDING STOCK 

Demand Reduction 

Scenario 

Annual Electricity 

Reduced  

(MWh | %) 

Annual 

Monitory Saving 

($ | %) 

(a) Cooling set-point temp. 2,733 2.83% 93,707 3.41% 

(b) Lighting 231 0.24% 12,163 0.44% 

(c) Internal equipment 44 0.05% 2,549 0.09% 

(a), (b), and (c) 3,009 3.11% 108,418 3.95% 

 

Test Case 2: Grid Reaction 

Test Case 1 showed an example of estimating energy and 
monetary savings of load reduction when the electricity price 
profile is fixed. If we consider a city/state-scale network in 
the real-time electricity market, the electricity price can also 
change when buildings reduce their peak loads. A much 
larger building stock with a combination of different building 
types (Table VII) is modeled in this test case. The relative 
proportion of each type is estimated according to the CBECS 
2003 building characteristics summary for the Midwest U.S.  

TABLE VII.  BUILDING STOCK SPECIFICATION IN TEST CASE 2 

Building Type 

Total Floor 

Area (million 

sq. m) 

Dominant 

Building 

Age 

Primary 

Heating 

Source 

Office 108 Pre-1980 Natural gas 

Supermarket   14 Post-1980 Natural gas 

Strip Mall   11 Post-1980 Electricity 

Education   92 Pre-1980 Natural gas 

Healthcare   29 Post-1980 Natural gas 

Warehouse and 

Storage 
109 Post-1980 Natural gas 

Lodging   41 Pre-1980 Electricity 

Food Service   16 Post-1980 Natural gas 

Retail (other than 

mall) 
  32 Post-1980 Natural gas 

Food Sales   12 Post-1980 Natural gas 
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We consider a macro-model of the electricity market, a black 
box that abstracts the market mechanism and trading, and the 
transmission power flow security involved in an actual 
electricity market. Given the characteristics of the market, 
our prototype gives the market prices based on the 
economics of supply and demand, shown in Fig. 12. The 
supply curve is generated from the capacity of the local 
generation companies. In each hour, the electricity price is 
determined by this supply curve and the total electricity 
demand of the previous hour. 

 
Figure 12.  Sample electricity supply curve 

Since the commercial sector is not the only electricity 
consumer, we assume that the residential, industrial, and 
transportation sectors in total consume 65% of the total 
regional electricity [1]. This portion is modeled as a fixed 
base demand curve below the fluctuating demand of 
commercial buildings. For the baseline case in which no 
building agent takes demand reduction actions, the regional 
electricity demand profile is calculated as shown in Fig. 13.  

 
Figure 13.  Estimated electricity load profile – baseline  

 
Figure 14.  Estimated electricity price profile – baseline 

In this case, the load reduction actions are applied to more 
building types. The example set of arrangements is listed in 
Table VIII. 

 

TABLE VIII.  AGENT LOAD-REDUCING ACTIONS AND ELECTRICITY PRICE 

Demand Reduction 

Scenario 

Agents 

Applied to 

When the 

Power Price 

Is above 

Action from 

Buildings 

(a) Cooling set-point 

temperature 
O, H, R, FE $45/MWh 

Increase set-point 

temp. by 2℃ 

(b) Heating set-point 

temperature 
O, H, R, FE $45/MWh 

Decrease set-

point by 2℃ 

(c) Lighting O, S, R, E, FE $45/MWh 
Reduce lighting 

load by 30% 

(d) Internal 

equipment 
O, E $45/MWh 

Reduce internal 

equip. load by 

30% 

 

The simulation results are plotted in Fig. 15, which compares 
the hourly load profile with and without load reduction 
actions. Small decreases in electricity demand appear during 
the middle of each day, when the electricity price is high. All 
the demand reduction actions have led to a decrease in 
annual regional electricity consumption (including all the 
sectors) of about 0.2%. 

 
Figure 15.  Commercial building stock electricity demand before and after 

reduction actions, Aug. 4
th

 through 11
th
  

However, on the price side, these actions shaved the 
electricity price profile (compare Fig. 16 and 14). The annual 
maximum market price dropped from ~$70 to ~$60/MWh. 
Although in this test case simulation, only part of the 
building agents took action, the changes in load and price 
profiles demonstrate the impact of commercial buildings on 
the smart grid. 

 
Figure 16.  Estimated electricity price profile– after load reduction 
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V. CONCLUSION AND FUTURE WORK 

This paper discusses a preliminary study on simulating 
commercial buildings as consumer agents that interact with 
the electricity market. A bottom-up building agent model, 
together with a building stock simulation framework, is 
proposed. By using a macro-model of the electricity supply 
curve, the dynamic pricing process is also modeled. This is 
the first attempt to address the role of consumers in a “white-
box” and hourly approach. Two test cases demonstrate the 
capabilities of the proposed framework to help in large-scale 
smart grid simulations. 

In the future, we intend to apply the prototype in a power 
grid simulation tool, thus providing more detailed options for 
modeling the market pricing mechanism. In addition, how to 
determine and judge the quality of representative buildings 
for each agent deserves further research. A statistical 
calibration method should be developed to determine and 
evaluate the input parameters that highly reflect the nature of 
the building stock, with respect to the inherent uncertainty in 
consumption simulations. 
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